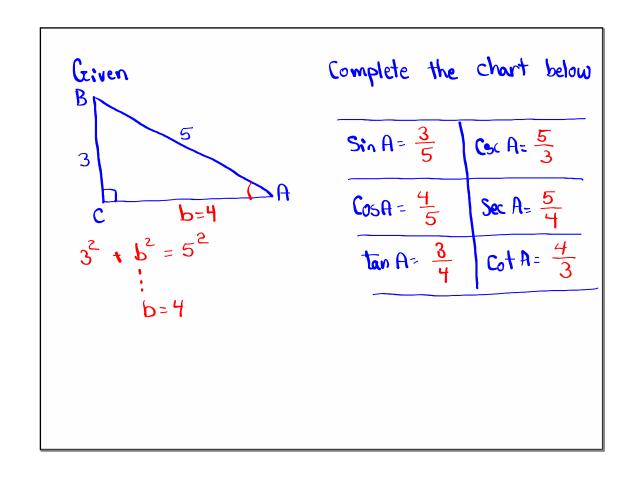


Sin A =
$$\frac{\text{OPP.}}{\text{hyp.}} = \frac{a}{c}$$


Cos A = $\frac{Adi}{\text{hyp.}} = \frac{a}{c}$
 $\frac{1}{\text{cos A}} = \frac{Adi}{\text{hyp.}} = \frac{a}{c}$
 $\frac{1}{\text{cos A}} = \frac{c}{Adj} = \frac{a}{b}$

Sec A = $\frac{1}{\text{cos A}} = \frac{c}{b}$

Cot A = $\frac{1}{\text{tan A}} = \frac{b}{a}$

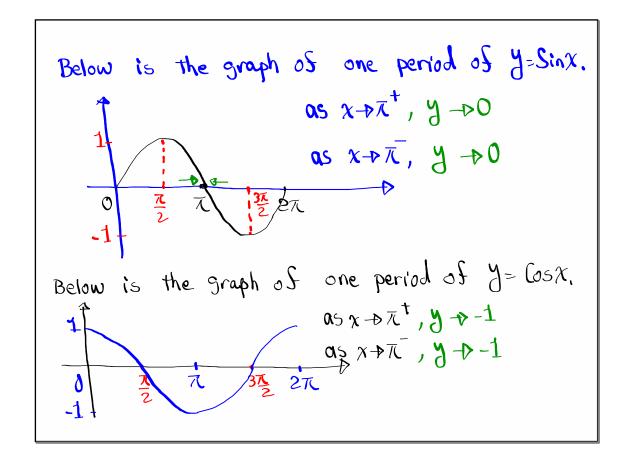
Prove 1 + $\frac{1}{\text{tan A}} = \frac{b}{a}$

1 + $\frac{a^2}{b^2} = \frac{1}{b^2} = \frac{a^2}{b^2} = \frac{b^2}{b^2} + \frac{a^2}{b^2}$
 $= \frac{b^2 + a^2}{b^2} = \frac{c^2}{b^2} = \left(\frac{c}{b}\right)^2 = \frac{c^2}{\text{Sec A}}$

Prove
$$\tan A = \frac{\sin A}{\cos A}$$

Cos A

Divide both numerator and deno. by C


 $\frac{\cos A}{\cos A}$

I am standing 25 St Svom a tree. From my feet, the angle of elevation to the top of the tree is 35°. Draw $\frac{1}{5}$ Find the height of the tree.

 $\frac{\tan 35^{\circ} = \frac{h}{25}}{\cos A}$

Cross-Multiply

 $\frac{1}{1.5}$ St Tree $\frac{1}{1.5}$ St $\frac{1}{1.5}$ St

I want to evaluate
$$\frac{\sin x}{x}$$
 at $x=0$.


Plug it in $\rightarrow \frac{\sin 0}{0} = \frac{0}{0}$ Indeterminate

Let's evaluate at $x=.001$ $\frac{\sin .001}{.001} = .999999833$

Now do $x=-.001$ $\frac{\sin (-.001)}{-.001} = .99999.$

as $x \rightarrow 0$, $\frac{\sin x}{x} \rightarrow 1$

as $x \rightarrow 0$, $\frac{\sin x}{x} \rightarrow 1$

Below is half of the graph of
$$f(x) = \frac{1}{2^2}$$

Even Function

Symmetric with respect to Y-axis

1) Draw the other half.

3) as $x + 0^{-1}$, $y + \infty$

4) as $x + \infty$, $y + \infty$

6) Domain $(-\infty,0) \cup (0,\infty)$

5) as $x + \infty$, $y + \infty$

5) Domain $(-\infty,0) \cup (0,\infty)$

7) Range $(0,\infty)$

Find difference quotient for
$$f(x) = \frac{1}{\chi^2}$$
, evaluate

the final result for $h = 0$.

$$f(x + h) - f(x) = \frac{1}{(x + h)^2} - \frac{1}{\chi^2}$$

$$h$$

$$LCD = (x + h)^2 \cdot \chi^2$$

$$\frac{(x + h)^2 \cdot \chi^2}{(x + h)^2 \cdot \chi^2} \cdot \frac{(x + h)^2 \cdot \chi^2}{(x + h)^2 \cdot \chi^2} \cdot h$$

$$= \frac{\chi^2 - (x + h)^2}{(x + h)^2 \cdot \chi^2} \cdot \frac{(x + h)^2 \cdot \chi^2}{(x + h)^2 \cdot \chi^2} \cdot h$$

$$= \frac{K(-2x - h)}{(x + h)^2 \cdot \chi^2} \cdot \frac{-2x - h}{(x + h)^2 \cdot \chi^2}$$
For $h = 0$

$$\frac{-2x - 0}{(x + 0)^2 \cdot \chi^2} \cdot \frac{-2x}{\chi^2 \cdot \chi^2} = \frac{-2}{\chi^3}$$

Class QZ 2

Consider the graph below 1) Y-Int (0,4)

3) as
$$\chi \rightarrow 4^{\dagger}$$
, $y \rightarrow 3$

4) as
$$\chi \rightarrow 4$$
, $\gamma \rightarrow 3$